1. S. M. Hong, Y. J. Yu, Y. W. Kim and H. G. Lee, “Study of Improve Sensing Cycle Scheme for Sersor based Forest Fire Detect System”, Proceedings of the Korea Information Processing Society Conference, 2021; No. 05a, pp. 104-107 No. 2021,
https://doi.org/10.3745/PKIPS.y2021m05a.104.
2. S. H. Cho, “The Wildfires that were Brutally Terrifying - Covering the Scene of a Large Forest Fire in Uljin, North Gyeongsang Province, March 4”, Broadcast Journalist, Vol. 66, pp. 30-33 No. 2022.
3. C. G. Kim, Y. S Choung, K.Y. Joo and K.S. Lee, “Effects of Hillslope Treatments for Vegetation Development and Soil Conservation in Burned Forests”, Journal of Ecology and Environment, Vol. 29, No. 3, pp. 295-303 (2006),
https://doi.org/10.5141/JEFB.2006.29.3.295.
4. Y. H. Kim and E. S. Baek, “Expansion of Firefighting Work Area by Improving the Forest Fire Response System in South Korea”, Fire Science and Engineering, Vol. 36, No. 4, pp. 66-73 No. 2022,
https://doi.org/10.7731/KIFSE.cc578790.
5. K. Zhang, J. B. Park, Y. H. Park and G. H. Cho, “A Design of Forest Fire Monitoring System Based on Sensor Network”, Proceedings of the Korean Information Processing Society, Vol. 14, No. 2, pp. 843-845 (2007).
6. Y. W. Shin and J. H. Park, “Analysis of the Effectiveness of Fire Drone Missions at Disaster Sites: An Empirical Approach”, Fire Science and Engineering, Vol. 34, No. 5, pp. 112-119 No. 2020,
https://doi.org/10.7731/KIFSE.cba54f4c.
7. J. H. Roh, S. H. Min and M. S. Gong, “Analysis of Fire Prediction Performance of Convolutional Neural Network-Based Classification Models”, Fire Science and Engineering, Vol. 36, No. 6, pp. 70-77 No. 2022,
https://doi.org/10.7731/KIFSE.9e906e7a.
8. H. Y. Jung, S. G. Choi and B. H. Lee, “Rotor Fault Diagnosis Method Using CNN-Based Transfer Learning with 2D Sound Spectrogram Analysis”, Electronics, Vol. 12, No. 3, pp. 480No. 2023,
https://doi.org/10.3390/electronics12030480.
9. Y. J. Kim and E. G. Kim, “Image based Fire Detection using Convolutional Neural Network”, Journal of the Korean Society for Information and Communication Studies, Vol. 20, No. 9, pp. 1649-1656 (2016),
http://doi.org/10.6109/jkiice.2016.20.9.1649.
11. K. Zhang, J. G. Wang, H. T. Shi, X. C. Zhang and Y. H. Tang, “A Fault Diagnosis Method Based on Improved Convolutional Neural Network for Bearings under Variable Working Conditions”, Measurement, Vol. 182, pp. 109749No. 2021,
https://doi.org/10.1016/j.measurement.2021.109749.
12. X. Z. Xu, M. Du, H. X. Guo, J. Y. Chang and X. Y. Zhao, “Lightweight FaceNet Based on MobileNet”, International Journal of Intelligence Science, Vol. 11, No. 1, pp. 1-16 No. 2021,
https://doi.org/10.4236/ijis.2021.111001.
13. C. H. Tu, J. H. Lee, Y. M. Chan and C. S. Chen, “Pruning Depthwise Separable Convolutions for MobileNet Compression”, International Joint Conference on Neural Networks, pp. 1-8 No. 2020,
https://doi.org/10.1109/IJCNN48605.2020.9207259.
14. W. Wang, Y. T. Zou, X. Wang, J. Y. You and Y. H. Luo, “A Novel Image Classification Approach via Dense-MobileNet Models”, Mobile Information Systems, (2020), pp. 8No. 2020,
https://doi.org/10.1155/2020/7602384.
19. F. Rustam, M. A. Siddique, H. U. R. Siddiqui, S. Ullah, A. Mehmood, I. Ashraf and G. S. Choi, “Wireless Capsule Endoscopy Bleeding Images Classification Using CNN Based Model”, IEEE Access, Vol. 9, pp. 33675-33688 No. 2021,
https://doi.org/10.1109/ACCESS.2021.3061592.
20. H. Y. Kim, X. F. Zhang, Y. S. Kim and I. H. Jung, “Comparison of the Performance of CNN Models for Retinal Diseases Diagnosis”, Journal of the Korean Society for Intelligent Systems, Vol. 32, No. 1, pp. 51-60 No. 2022,
https://doi.org/10.5391/JKIIS.2022.32.1.51.