2. J. H. Lee, K. S. Jeong and H. Y. Jung, “Development of a Forest Fire Detection System Using a Drone-based Convolutional Neural Network Model”, International Journal of Fire Science and Engineering, Vol. 37, No. 2, pp. 30-40 (2023),
https://doi.org/10.7731/KIFSE.26686d3f.
3. H. J. Kwon, B. H. Lee and H. Y. Jung, “Research on Improving the Performance of YOLO-Based Object Detection Models for Smoke and Flames from Different Materials”, Journal of the Korean Institute of Electrical and Electronic Material Engineers, Vol. 37, No. 3, pp. 261-273 (2024),
https://doi.org/10.4313/JKEM.2024.37.3.4.
4. S. G. Choi, B. H. Lee, J. K. Kim and H. Y. Jung, “Deep-Learning-Based Seismic-Signal P-Wave First-Arrival Picking Detection Using Spectrogram Images”, Electronics, Vol. 13, No. 1, (2024),
https://doi.org/10.3390/electronics13010229.
5. H. Y. Jung, S. G. Choi and B. H. Lee, “Rotor Fault Diagnosis Method Using CNN-Based Transfer Learning with 2D Sound Spectrogram Analysis”, Electronics, Vol. 12, No. 3, (2023),
https://doi.org/10.3390/electronics12030480.
6. S. Maillard, M. S. Khan, A. Cramer and E. K. Sancar, “Wildfire and Smoke Detection Using YOLO-NAS”, 2024 IEEE 3rd International Conference on Computing and Machine Intelligence, IEEE, (2024),
https://doi.org/10.1109/ICMI60790.2024.10585773.
7. L. A. O. Goncalves, R. Ghali and M. A. Akhloufi, “YOLO-Based Models for Smoke and Wildfire Detection in Ground and Aerial Images”, Fire, Vol. 7, No. 4, (2024),
https://doi.org/10.3390/fire7040140.
9. T . Y. Lin, P. Goyal, R. Girshick, K. He and P. Dollar, “Focal Loss for Dense Object Detection”, Proceedings of the IEEE International Conference on Computer Vision, (2018),
https://doi.org/10.48550/arXiv.1708.02002.
10. S. Ren, K. He, R. Girshick and J. Sun, “Faster r-cnn: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS'15: Proceedings of the 28th International Conference on Neural Information Processing Systems, (2015).
11. Z. Cai and N. Vasconcelos, “Cascade r-cnn: Delving into High Quality Object Detection”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2018),
https://doi.org/10.48550/arXiv.1712.00726.
12. L. Zhao, L. Zhi, C. Zhao and W. Zheng, “Fire-YOLO: A Small Target Object Detection Method for Fire Inspection”, Sustainability, Vol. 14, No. 9, (2022),
https://doi.org/10.3390/su14094930.
13. P. Shen, N. Sun, K. Hu, X. Ye, P. Wang, Q. Xia and C. Wei, “FireViT: An Adaptive Lightweight Backbone Network for Fire Detection”, Forests, Vol. 14, No. 11, (2023),
https://doi.org/10.3390/f14112158.
14. Y. Q. Huang, J. C. Zheng, S. D. Sun, C. F. Yang and J. Liu, “Optimized YOLOv3 Algorithm and Its Application in Traffic Flow Detections”, Applied Sciences, Vol. 10, No. 9, (2020),
https://doi.org/10.3390/app10093079.
15. M. Mostofa, S. N. Ferdous, B. S. Riggan and N. M. Nasrabadi, “Joint-SRVDNet: Joint Super Resolution and Vehicle Detection Network”, IEEE Access, Vol. 8, pp. 82306-82319 (2020),
https://doi.org/10.1109/ACCESS.2020.2990870.
16. S. Ren, K. He, R. Girshick and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 39, No. 6, pp. 1137-1149 (2017),
https://doi.org/10.1109/TPAMI.2016.2577031.
17. Z. Cai and N. Vasconcelos, “Cascade R-CNN: High Quality Object Detection and Instance Segmentation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 43, No. 5, pp. 1483-1498 (2021),
https://doi.org/10.1109/TPAMI.2019.2956516.