1. A. Ergün, G. Kürklü, B. M.Serhat and M. Y. Mansour, “The Effect of Cement Dosage on Mechanical Properties of Concrete Exposed to High Temperatures”, Fire Safety Journal, Vol. 55, pp. 160-167 (2013),
https://doi.org/10.1016/j.firesaf.2012.10.016.
3. U. Mucteba, Y. Kemalettin and I. Metin, “Properties and Behavior of Self-Compacting Concrete Produced with GBFS and FA Additives Subjected to High Temperatures”, Construction and Building Materials, Vol. 28, No. 1, pp. 321-326 (2012),
https://doi.org/10.1016/j.conbuildmat.2011.08.076.
4. Y. J. Nam, K. S. Jeong, W. C. Kim, H. G. Choi and T. G. Lee, “Evaluation on Early Strength Development of Concrete Mixed with Non-Sintered Hwangto Using Ultrasonic Pulse Velocity”, Materials, Vol. 16, No. 21, pp. 6850(2023),
https://doi.org/10.3390/ma16216850.
5. W. C. Kim, H. G. Choi and T. G. Lee, “Investigating Ultrasonic Pulse Velocity Method for Evaluating High-Temperature Properties of Non-Sintered Hwangto-Mixed Concrete as a Cement Replacement Material”, Materials, Vol. 16, No. 3, pp. 1099(2023),
https://doi.org/10.3390/ma16031099.
6. J. H. Lee, T. G. Lee, H. G. Choi and D. E. Lee, “Assessment of Optimum CaO Content Range for High Volume FA Based Concrete Considering Durability Properties”, Applied Sciences, Vol. 10, No. 19, pp. 6944(2022),
https://doi.org/10.3390/app10196944.
7. L. Cheng and Z. Mingzhong, “Effect of Curing Temperature on Hydration, Microstructure and Ionic Diffusivity of Fly Ash Blended Cement Paste: A Modelling Study”, Construction and Building Materials, Vol. 297, pp. 123834(2021),
https://doi.org/10.1016/j.conbuildmat.2021.123834.
8. J. Zijian, C. Chun, S. Jinjie, Z. Yamei, S. Zhengming and Z. Peigen, “The Microstructural Change of C-S-H at Elevated Temperature in Portland cement/GGBFS Blended System”, Cement and Concrete Research, Vol. 123, pp. 105773(2019),
https://doi.org/10.1016/j.cemconres.2019.05.018.
10. KCI, "Structural Concrete Design Code" (2021).
11. BS EN. 1992-1-2, "Eurocode 2: Design of Concrete Structures - Part 1.2: General Rules - Structural Fire Design" (2004).
12. ACI: 2016R-89R, "Guide for Determining the Fire Endurance of Concrete Elements" (1989).
13. L. Qingtao, L. Zhuguo and Y. Guanglin, “Effects of Elevated Temperatures on Properties of Concrete Containing Ground Granulated Blast Furnace Slag as Cementitious Material”, Construction and Building Materials, Vol. 35, pp. 687-692 (2012),
https://doi.org/10.1016/j.conbuildmat.2012.04.103.
14. N. Abid, A. M. ShazimAli and Y. L. Tommy, “Qualitative and Quantitative Analysis and Identification of Flaws in the Microstructure of Fly Ash and Metakaolin Blended High Performance Concrete after Exposure to Elevated Temperatures”, Construction and Building Materials, Vol. 38, pp. 731-741 (2013),
https://doi.org/10.1016/j.conbuildmat.2012.09.062.
17. M. Saridemir, M. H. Severcan, M. Ciflikli and S. Celikten, “Microstructural Analyses of High Strength Concretes Containing Metakaolin at High Temperatures”, International Journal of Civil Engineering, Vol. 15, No. 2, pp. 273-285 (2017),
https://doi.org/10.1007/s40999-016-0081-7.
18. Y. D. Muhammed and H. S. Ahmet, “High Temperature Resistance of Concretes with GGBFS, Waste Glass Powder, and Colemanite ore Wastes after Different Cooling Conditions”, Construction and Building Materials, Vol. 196, pp. 66-81 (2019),
https://doi.org/10.1016/j.conbuildmat.2018.11.087.
19. N. Abdelmelek, N. S. Alimrani, N. Krelias and E. Lubloy, “Effect of Elevated Temperatures on Microstructure of High Strength Concrete Based-Metakaolin”, Journal of King Saud University-Engineering Sciences, In press (2021).
https://doi.org/10.1016/j.jksues.2021.08.001.
20. J. I. Arimanwa, M. C. Arimanwa, J. C. Maduagwu and C. T. G. Awodiji, “Effect of Elevated Temperature on Compressive Strength of Fly Ash Blended Cement Concrete”, International Journal of Engineering Research And Development, Vol. 17, No. 10, pp. 8-14 (2021).
21. R. M. Jelčić, I. Gabrijel, G. I. Netinger and A. Mladenovič, “Residual Compressive Behavior of Self-Compacting Concrete after High Temperature Exposure—Influence of Binder Materials”, Materials, Vol. 15, No. 6, pp. 2222(2022),
https://doi.org/10.3390/ma15062222.
23. W. P. S. Dias, G. A. Khoury and P. J. E. Sullivan, “Mechanical Properties of Hardened Cement Paste Exposed to Temperatures Up to 700 C (1292 F)”, Materials Journal, Vol. 87, No. 2, pp. 160-166 (1990).
25. W. G. Corley, “World Trade Center Building performance study: Data collection, preliminary observations, and recommendations”, Federal Emergency Management Agency (2002).
26. H. Muttaqin, S. Taufiq and A. Mochammad, “Mechanical Properties and Absorption of Lightweight Concrete Using Lightweight Aggregate from Diatomaceous Earth”, Construction and Building Materials, Vol. 277, pp. 122324(2021),
https://doi.org/10.1016/j.conbuildmat.2021.122324.
27. J. Ivan and N. Terezia, “Effect of Temperature on Structural Quality of the Cement Paste and High-Strength Concrete with Silica Fume”, Nuclear Engineering and Design, Vol. 235, No. 17-19, pp. 2019-2032 (2005),
https://doi.org/10.1016/j.nucengdes.2005.05.011.