1. FC. Yang and J. Chen, “Fully Noncontact Nonlinear Ultrasonic Characterization of Thermal Damage in Concrete and Correlation with Microscopic Evidence of Material Cracking”, Cement and Concrete Research Journal, Vol. 123, pp. 105797(2019),
https://doi.org/10.1016/j.cemconres.2019.105797.
2. M. Nematzadeh, M. Tayebi and H. Samadvand, “Prediction of Ultrasonic Pulse Velocity in Steel Fiber-reinforced Concrete Containing Nylon Granule and Natural Zeolite After Exposure to Elevated Temperatures”, Construction and Building Materials Journal, Vol. 273, pp. 121958(2021),
https://doi.org/10.1016/j.conbuildmat.2020.121958.
4. K. Güçlüer, “Investigation of the Effects of Aggregate Textural Properties on Compressive Strength (CS) and Ultrasonic Pulse Velocity (UPV) of Concrete”, Journal of Building Engineering, Vol. 27, No. 2, pp. 100949(2020),
https://doi.org/10.1016/j.jobe.2019.100949.
5. G. I. Crawford, "Guide to Nondestructive Testing of Concrete, Technical Report", U.S. Department of Transportation, No. FHWA-SA-97-105 (1997).
6. G. Trtnik, F. Kavčič and G. Turk, “Prediction of Concrete Strength Using Ultrasonic Pulse Velocity and Artificial Neural Networks”, Ultrasonics Vol. 49, No. 1, pp. 53-60 (2009),
https://doi.org/10.1016/j.ultras.2008.05.001.
7. S. Popovics, "Analysis of the Concrete Strength Versus Ultrasonic Pulse Velocity Relationship", American Society for Nondestructive Testing (2007).
8. M. Malik, S. K. Bhattacharyya and S. V. Barai, “Thermal and Mechanical Properties of Concrete and its Constituents at Elevated Temepratures: A Review”, Construction and Building Materials Journal, Vol. 270, pp. 121398(2021),
https://doi.org/10.1016/j.conbuildmat.2020.121398.
9. C. Thomas, J. Rico, P. Tamayo, J. Setién, F. Ballester and J. aA. Polanco, “Neutron Shielding Concrete Incorporating B4C a nd PVA Fibers Exposed to High Temperatures”, Journal of Building Engineering, Vol. 26, pp. 100859(2019),
https://doi.org/10.1016/j.jobe.2019.100859.
10. P. Alcaíno, H. S. María, C. M. Verdugo and L. López, “Experimental Fast-assessment of Post-fire Residual Strength of Reinforced Concrete Frame Buildings Based on Non-destructive Tests”, Construction and Building Materials, Vol. 234, pp. 117371(2020),
https://doi.org/10.1016/j.conbuildmat.2019.117371.
11. I. Demir, M. Gümüs and H. S. Gökçe, “Gamma Ray and Neutron Shielding Characteristics of Polypropylene Fiberreinforced Heavyweight Concrete Exposed to High Temperatures”, Construction and Building Materials, Vol. 257, pp. 119596(2020),
https://doi.org/10.1016/j.conbuildmat.2020.119596.
12. M. Uysal, K. Yilmaz and M. Ipek, “Properties and Behavior of Self-compacting Concrete Produced with GBFS and FA Additives Subjected to High Temepratures”, Construction and Building Materials, Vol. 28, No. 1, pp. 321-326 (2012),
https://doi.org/10.1016/j.conbuildmat.2011.08.076.
13. U. Dolinar, G. Trtnik, G. Truk and T. Hozjan, “The Feasibility of Estimation of Mechanical Properties of Limestone Concrete After Fire Using Nondestructive Methods”, Construction and Building Materials, Vol. 228, pp. 116786(2019),
https://doi.org/10.1016/j.conbuildmat.2019.116786.
14. E. Hwang, G. Kim, G. Choe, M. Yoon, N. Gucunski and J. Nam, “Evaluation of Concrete Degradation Depending on Heating Conditions by Ultrasonic Pulse Velocity”, Construction and Building Materials, Vol. 171, pp. 511-520 (2018),
https://doi.org/10.1016/j.conbuildmat.2018.03.178.
15. H. Mohammadhosseini, F. Alrshoudi, M. Md. Tahir, R. Alyousef, H. Alghamdi, Y. R. Alharbi and A. Alsaif, “Performance Evaluation of Novel Prepacked Aggregate Concrete Reinforced with Waste Polypropylene Fibers at Elevated Temperatures”, Construction and Building Materials, Vol. 259, pp. 120418(2020),
https://doi.org/10.1016/j.conbuildmat.2020.120418.
16. A. R. O. Dias, F. A. Amancio, M. F. C. Rafael and A. E. B. Cabral, “Study of Propagation of Ultrasonic Pulses in Concrete Exposed at High Temperatures”, Procedia Structural Integrity, Vol. 11, pp. 84-90 (2018),
https://doi.org/10.1016/j.prostr.2018.11.012.
18. A. Sadrmomtazi, S. H. Gashti and B. Tahmouresi, “Residual Strength and Microstructure of Fiber Reinforced Self-compacting Concrete Exposed to High Temeperatures”, Construction and Building Materials, Vol. 230, pp. 116969(2020),
https://doi.org/10.1016/j.conbuildmat.2019.116969.
19. S. K. Park, J. Y. Heo and W. H. Lee, “Nondestructive Test for Strength Estimation of Concrete Deterlorated by High Temperature”, Proceedings of the Korea Concrete Institute Conference, Korea Concrete Institute, 2008.04a, pp. 181-184 (2008).
20. H. Yang, Y. Lin, C. Hsiao and J. Y. Liu, “Evaluating Residual Compressive Strength of Concrete at Elevated Temeperatures Us ing Ultrasonic Pulse Velocity”, Fire Safety Journal, Vol. 44, No. 1, pp. 121-130 (2009),
https://doi.org/10.1016/j.firesaf.2008.05.003.
21. N . V. S. Kumar and K. S . S. Ram, “Performance Of Concrete At Elevated Temperatures Made With Crushed Rock Dust As Filler Material”, 9th International Conference of Materials Processing and Characterization, ICMPC-2019, Vol. 18, Part 7, pp. 2270-2278 (2019),
https://doi.org/10.1016/j.matpr.2019.07.009.
22. H. AzariJafari, M. J. T. Amiri, A. Ashrafian, H. Rasekh, M. J. Barforooshi and J. Berenjian, “Ternary Blended Cement: An Eco-friendly Alternative to Improve Resistivity of High-performance Self-consolidating Concrete Against Elevated Temperature”, Journal of Cleaner Production, Vol. 223, pp. 575(2019),
https://doi.org/10.1016/j.jclepro.2019.03.054.
23. M. Abed and J. Brito, “Evaluation of High-performance Self-compacting Concrete Using Alternative Materials and Exposed to Elevated Temperatures by Non-destructive Testing”, Journal of Building Engineering, Vol. 32, pp. 101720(2020),
https://doi.org/10.1016/j.jobe.2020.101720.
24. Y . J. K im, J. H . Park, Y. S . Heo, Y . S. Hwang, M. C. Han and C . G. Han, “A R evel ation of E xpansion Behavior o f High Strength Concrete Using Limestone Aggregate after Exposing to the Fire”, Proceedings of 2013 Spring Annual Conference, Architectural Institute of Korea Journal, Vol. 33, pp. 463-464 (2013).
25. M. Husem, “The Effect of High Temperature on Compressive and Flexural Strengths of Ordinary and High-performance Concrete”, Fire Safety Journal, Vol. 41, No. 2, pp. 155-163 (2006).
26. G. Roufael, A. L. Beaucour, J. Eslami, D. Hoxha and A. Noumowe, “Influence of Lightweight Aggregates on the Physical and Mechanical Residual Properties of Concrete Subjected to High Temperature”, Construction and Building Materials, Vol. 268, pp. 121221(2021),
https://doi.org/10.1016/j.conbuildmat.2020.121221.
27. A. H. Ghasemi and M. Nematzadeh, “Tensile and Compressive Behavior of Self-compacting Concrete Incorporating PET as Fine Aggregate Substitution After Thermal Exposure: Experiments and Modeling”, Construction and Building Materials, Vol. 289, pp. 123067(2021),
https://doi.org/10.1016/j.conbuildmat.2021.123067.
28. M. B. S. Sollero, A. L. Moreno Junior and C. N. Costa, “Residual Mechanical Strength of Concrete Exposed to High Temperatures - International Standardization and Influence of Coarse Aggregates”, Construction and Building Materials, Vol. 287, pp. 122843(2021),
https://doi.org/10.1016/j.conbuildmat.2021.122843.
29. The Japanese Institute of Matals and Materials (1937).
30. Architectural Institute of Japan, Japanese Architectural Standard Specification (JASS 5) (2009).
31. J. Pyszipiak, “Method of Concrete Strength Control in Prefabricated Slabs by Ultrasound”, Building Science, Vol. 2, No. 4, pp. 331-335 (1948).